Stability Conditions for Strong Rarefaction Waves
نویسنده
چکیده
In this paper we study a number of algebraic conditions connected with the stability of strictly hyperbolic n × n systems of conservation laws in one space dimension ut + f(u)x = 0. Such conditions yield existence and continuity of the flow of solutions in the vicinity of the reference solution. Our main concern is a single rarefaction wave having arbitrarily large strength.
منابع مشابه
Nonlinear Stability of Rarefaction Waves for the Compressible Navier-stokes Equations with Large Initial Perturbation
The expansion waves for the compressible Navier-Stokes equations have recently been shown to be nonlinear stable. The nonlinear stability results are called local stability or global stability depending on whether theH1−norm of the initial perturbation is small or not. Up to now, local stability results have been well established. However, for global stability, only partial results have been ob...
متن کاملStability of Rarefaction Waves in Viscous Media
We study the time-asymptotic behavior of weak rarefaction waves of systems with strictly hyperbolic ux functions in one dimensional viscous uids. Our main result is to show that solutions of perturbed rarefaction data converge to an approximate, \Burgers"-rarefaction wave, for initial perturbations w 0 with small mass and localized as w 0 (x) = O(jxj ?1). The proof proceeds by iteration of a po...
متن کاملMotions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation
The stability of the axisymmetric solitary waves of the Gross-Pitaevskii (GP) equation is investigated. The Implicitly Restarted Arnoldi Method for banded matrices with shift-invert was used to solve the linearised spectral stability problem. The rarefaction solitary waves on the upper branch of the Jones-Roberts dispersion curve are shown to be unstable to axisymmetric infinitesimal perturbati...
متن کاملAsymptotic Stability of Rarefaction Waves for 2 * 2 Viscous Hyperbolic Conservation Laws
This paper concerns the asymptotic behavior toward rarefaction waves of the solution of a genera) 2 x 2 hyperbolic conservation laws with positive viscosity. We prove that if the initial data is close to a constant state and its values at + a3 lie on the kth rarefaction curve for the corresponding hyperbolic conservation laws, then the solution tends as I + co to the rarefaction wave determined...
متن کاملViscous Rarefaction Waves by Tai-ping Liu and Shih-hsien Yu
A rarefaction wave for system of viscous conservation laws induces strong coupling of waves pertaining to different characteristic fields. For the characteristic field pertaining to the rarefaction wave, there are the nonlinear hyperbolic, linear in time, and the parabolic, sub-linear in time, dissipations. We study the quantitative properties of the waves propagating around the rarefaction wav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Math. Analysis
دوره 36 شماره
صفحات -
تاریخ انتشار 2005